3.9.62 \(\int \frac {(a+b x^2)^2}{(e x)^{3/2} (c+d x^2)^{5/2}} \, dx\) [862]

Optimal. Leaf size=442 \[ -\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) (e x)^{3/2}}{2 c^3 d e^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^3 d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}} \]

[Out]

-1/3*(7*a^2*d^2-2*a*b*c*d+b^2*c^2)*(e*x)^(3/2)/c^2/d/e^3/(d*x^2+c)^(3/2)-2*a^2/c/e/(d*x^2+c)^(3/2)/(e*x)^(1/2)
+1/2*(b^2*c^2+a*d*(-7*a*d+2*b*c))*(e*x)^(3/2)/c^3/d/e^3/(d*x^2+c)^(1/2)-1/2*(b^2*c^2+a*d*(-7*a*d+2*b*c))*(e*x)
^(1/2)*(d*x^2+c)^(1/2)/c^3/d^(3/2)/e^2/(c^(1/2)+x*d^(1/2))+1/2*(b^2*c^2+a*d*(-7*a*d+2*b*c))*(cos(2*arctan(d^(1
/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))*EllipticE(sin(2*
arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(1/2))*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2
)^(1/2)/c^(11/4)/d^(7/4)/e^(3/2)/(d*x^2+c)^(1/2)-1/4*(b^2*c^2+a*d*(-7*a*d+2*b*c))*(cos(2*arctan(d^(1/4)*(e*x)^
(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))*EllipticF(sin(2*arctan(d^(
1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(1/2))*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^(1/2)/c^
(11/4)/d^(7/4)/e^(3/2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 442, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {473, 468, 296, 335, 311, 226, 1210} \begin {gather*} -\frac {(e x)^{3/2} \left (7 a^2 d^2-2 a b c d+b^2 c^2\right )}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (a d (2 b c-7 a d)+b^2 c^2\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}+\frac {\left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (a d (2 b c-7 a d)+b^2 c^2\right ) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {\sqrt {e x} \sqrt {c+d x^2} \left (a d (2 b c-7 a d)+b^2 c^2\right )}{2 c^3 d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {(e x)^{3/2} \left (a d (2 b c-7 a d)+b^2 c^2\right )}{2 c^3 d e^3 \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(5/2)),x]

[Out]

(-2*a^2)/(c*e*Sqrt[e*x]*(c + d*x^2)^(3/2)) - ((b^2*c^2 - 2*a*b*c*d + 7*a^2*d^2)*(e*x)^(3/2))/(3*c^2*d*e^3*(c +
 d*x^2)^(3/2)) + ((b^2*c^2 + a*d*(2*b*c - 7*a*d))*(e*x)^(3/2))/(2*c^3*d*e^3*Sqrt[c + d*x^2]) - ((b^2*c^2 + a*d
*(2*b*c - 7*a*d))*Sqrt[e*x]*Sqrt[c + d*x^2])/(2*c^3*d^(3/2)*e^2*(Sqrt[c] + Sqrt[d]*x)) + ((b^2*c^2 + a*d*(2*b*
c - 7*a*d))*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt[e
*x])/(c^(1/4)*Sqrt[e])], 1/2])/(2*c^(11/4)*d^(7/4)*e^(3/2)*Sqrt[c + d*x^2]) - ((b^2*c^2 + a*d*(2*b*c - 7*a*d))
*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/
4)*Sqrt[e])], 1/2])/(4*c^(11/4)*d^(7/4)*e^(3/2)*Sqrt[c + d*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0]
 && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))

Rule 473

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[c^2*(e*x)^(m
 + 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \left (c+d x^2\right )^{5/2}} \, dx &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}+\frac {2 \int \frac {\sqrt {e x} \left (\frac {1}{2} a (2 b c-7 a d)+\frac {1}{2} b^2 c x^2\right )}{\left (c+d x^2\right )^{5/2}} \, dx}{c e^2}\\ &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \int \frac {\sqrt {e x}}{\left (c+d x^2\right )^{3/2}} \, dx}{2 c^2 d e^2}\\ &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) (e x)^{3/2}}{2 c^3 d e^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \int \frac {\sqrt {e x}}{\sqrt {c+d x^2}} \, dx}{4 c^3 d e^2}\\ &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) (e x)^{3/2}}{2 c^3 d e^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^3 d e^3}\\ &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) (e x)^{3/2}}{2 c^3 d e^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{5/2} d^{3/2} e^2}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {d} x^2}{\sqrt {c} e}}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{5/2} d^{3/2} e^2}\\ &=-\frac {2 a^2}{c e \sqrt {e x} \left (c+d x^2\right )^{3/2}}-\frac {\left (b^2 c^2-2 a b c d+7 a^2 d^2\right ) (e x)^{3/2}}{3 c^2 d e^3 \left (c+d x^2\right )^{3/2}}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) (e x)^{3/2}}{2 c^3 d e^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^3 d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {\left (b^2 c^2+a d (2 b c-7 a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{11/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.13, size = 161, normalized size = 0.36 \begin {gather*} \frac {x \left (b^2 c^2 x^2 \left (c+3 d x^2\right )+2 a b c d x^2 \left (5 c+3 d x^2\right )-a^2 d \left (12 c^2+35 c d x^2+21 d^2 x^4\right )-\left (b^2 c^2+2 a b c d-7 a^2 d^2\right ) x^2 \left (c+d x^2\right ) \sqrt {1+\frac {d x^2}{c}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {d x^2}{c}\right )\right )}{6 c^3 d (e x)^{3/2} \left (c+d x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(5/2)),x]

[Out]

(x*(b^2*c^2*x^2*(c + 3*d*x^2) + 2*a*b*c*d*x^2*(5*c + 3*d*x^2) - a^2*d*(12*c^2 + 35*c*d*x^2 + 21*d^2*x^4) - (b^
2*c^2 + 2*a*b*c*d - 7*a^2*d^2)*x^2*(c + d*x^2)*Sqrt[1 + (d*x^2)/c]*Hypergeometric2F1[1/2, 3/4, 7/4, -((d*x^2)/
c)]))/(6*c^3*d*(e*x)^(3/2)*(c + d*x^2)^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1186\) vs. \(2(452)=904\).
time = 0.17, size = 1187, normalized size = 2.69 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/12*(42*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(
1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c*d^3*x^2-12*((d*x+(-c*d)^(1/
2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE((
(d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^2*d^2*x^2-6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*
2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d
)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^3*d*x^2-21*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/
2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2
))*a^2*c*d^3*x^2+6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-
x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^2*d^2*x^2+3*((d*x
+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*
EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^3*d*x^2+42*((d*x+(-c*d)^(1/2))/(-c*d)^(1/
2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1
/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c^2*d^2-12*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-
c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/
2*2^(1/2))*a*b*c^3*d-6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2
)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^4-21*((d*x+(-
c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*Ell
ipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c^2*d^2+6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1
/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(
-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^3*d+3*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2
))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2)
)*b^2*c^4-42*a^2*d^4*x^4+12*a*b*c*d^3*x^4+6*b^2*c^2*d^2*x^4-70*a^2*c*d^3*x^2+20*a*b*c^2*d^2*x^2+2*b^2*c^3*d*x^
2-24*a^2*c^2*d^2)/d^2/c^3/e/(e*x)^(1/2)/(d*x^2+c)^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate((b*x^2 + a)^2/((d*x^2 + c)^(5/2)*x^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.26, size = 244, normalized size = 0.55 \begin {gather*} \frac {{\left (3 \, {\left ({\left (b^{2} c^{2} d^{2} + 2 \, a b c d^{3} - 7 \, a^{2} d^{4}\right )} x^{5} + 2 \, {\left (b^{2} c^{3} d + 2 \, a b c^{2} d^{2} - 7 \, a^{2} c d^{3}\right )} x^{3} + {\left (b^{2} c^{4} + 2 \, a b c^{3} d - 7 \, a^{2} c^{2} d^{2}\right )} x\right )} \sqrt {d} {\rm weierstrassZeta}\left (-\frac {4 \, c}{d}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, c}{d}, 0, x\right )\right ) - {\left (12 \, a^{2} c^{2} d^{2} - 3 \, {\left (b^{2} c^{2} d^{2} + 2 \, a b c d^{3} - 7 \, a^{2} d^{4}\right )} x^{4} - {\left (b^{2} c^{3} d + 10 \, a b c^{2} d^{2} - 35 \, a^{2} c d^{3}\right )} x^{2}\right )} \sqrt {d x^{2} + c} \sqrt {x}\right )} e^{\left (-\frac {3}{2}\right )}}{6 \, {\left (c^{3} d^{4} x^{5} + 2 \, c^{4} d^{3} x^{3} + c^{5} d^{2} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

1/6*(3*((b^2*c^2*d^2 + 2*a*b*c*d^3 - 7*a^2*d^4)*x^5 + 2*(b^2*c^3*d + 2*a*b*c^2*d^2 - 7*a^2*c*d^3)*x^3 + (b^2*c
^4 + 2*a*b*c^3*d - 7*a^2*c^2*d^2)*x)*sqrt(d)*weierstrassZeta(-4*c/d, 0, weierstrassPInverse(-4*c/d, 0, x)) - (
12*a^2*c^2*d^2 - 3*(b^2*c^2*d^2 + 2*a*b*c*d^3 - 7*a^2*d^4)*x^4 - (b^2*c^3*d + 10*a*b*c^2*d^2 - 35*a^2*c*d^3)*x
^2)*sqrt(d*x^2 + c)*sqrt(x))*e^(-3/2)/(c^3*d^4*x^5 + 2*c^4*d^3*x^3 + c^5*d^2*x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{2}}{\left (e x\right )^{\frac {3}{2}} \left (c + d x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2/(e*x)**(3/2)/(d*x**2+c)**(5/2),x)

[Out]

Integral((a + b*x**2)**2/((e*x)**(3/2)*(c + d*x**2)**(5/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2*e^(-3/2)/((d*x^2 + c)^(5/2)*x^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^2}{{\left (e\,x\right )}^{3/2}\,{\left (d\,x^2+c\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(5/2)),x)

[Out]

int((a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(5/2)), x)

________________________________________________________________________________________